Recovering exponential accuracy from collocation point values of smooth functions with end-point singularities

نویسندگان

  • Zheng Chen
  • Chi-Wang Shu
چکیده

Gibbs phenomenon is the particular manner how a global spectral approximation of a piecewise analytic function behaves at the jump discontinuity. The truncated spectral series has large oscillations near the jump, and the overshoot does not decay as the number of terms in the truncated series increases. There is therefore no convergence in the maximum norm, and convergence in smooth regions away from the discontinuity is also slow. In [5], a methodology is proposed to completely overcome this difficulty in the context of spectral collocation methods, resulting in the recovery of exponential accuracy from collocation point values of a piecewise analytic function. In this paper, we extend this methodology to handle spectral collocation methods for functions which are analytic in the open interval but have singularities at end-points. With this extension, we are able to obtain exponential accuracy from collocation point values of such functions. Similar to [5], the proof is constructive and uses the Gegenbauer polynomials C n(x). The result implies that the Gibbs phenomenon can be overcome for smooth functions with endpoint singularities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering Exponential Accuracy in Fourier Spectral Methods Involving Piecewise Smooth Functions with Unbounded Derivative Singularities

Fourier spectral methods achieve exponential accuracy both on the approximation level and for solving partial differential equations (PDEs), if the solution is analytic. For linear PDEs with analytic but discontinuous solutions, Fourier spectral method produces poor pointwise accuracy, but still maintains exponential accuracy after post-processing [7]. In this paper, we develop a technique to r...

متن کامل

Solution of Troesche's problem by double exponential Sinc collocation method

In this investigation, the Sinc collocation method based on double exponential transformation is developed to solve the Troesche's problem. Properties of this method are utilized to reduce the system of strongly nonlinear two point boundary value problem to same nonlinear algebraic equations. Combining double exponential transformation through Sinc collocation method causes the remarkable resul...

متن کامل

On the Gibbs Phenomenon V: Recovering Exponential Accuracy from Collocation Point Values of a Piecewise Analytic Function

The paper presents a method to recover exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of an approximation to the interpolation polynomial (or trigonometrical polynomial). We show that if we are given the collocation point values (or' an highly accurate approximation) at the Gauss or Gauss-Lobatto points, we can reconstruct an uniform exponen...

متن کامل

A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities

We develop spectral collocation methods for fractional differential equations with variable order with two end-point singularities. Specifically, we derive three-term recurrence relations for both integrals and derivatives of the weighted Jacobi polynomials of the form 1 x μ1 1 Æ x 2P a,b j x a, b, μ1, μ2 Æ1 , which leads to the desired differentiation matrices. We apply the new differentiation...

متن کامل

Analysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method

In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 265  شماره 

صفحات  -

تاریخ انتشار 2014